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THERMODIFFUSIOPHORETIC CAPTURE OF AEROSOL
PARTICLES IN A PLANE CHANNFL WITH NONUNIFORM
TEMPERATURE

M. F. Barinova and E. R. Shchukin UDC 533.72

The article theoretically studies the process of capturing aerosol particles from a laminar
stream of a binary gas mixture inhomogeneous in temperature and concentration passing
through a plane channel with nonuniform temperature.

Aerosol particles are settling in a channel through which passes a stream of a binary gas mixture; its
first component consists of molecules of some volatile substance condensing on the lower plate with a temper-
ature Ty that is lower than the temperature of the upper plate T,. We examine the case of steady-state motion
of the gas stream where we may neglect the influence of the inlet part on the distribution of mass velocity, tem-
perature, and concentration of the components of the gas mixture. The theory of capture is devised for gas
mixtures with similar molecular masses where the coefficients of viscosity, thermal conductivity, and diffu-
sion depend only weakly on the concentration of the substances of which the gas mixture is composed. Among
such gas mixtures is the steam—air mixture consisting of molecules of air and water vapor.

The aerosol particles entering the channel begin to move toward the surface of the lower plate along a
path described by the differential equation of motion of aerosol particles

dxlve = dzlv,, 1)

where vy and v, are the x~ and z-components of the velocity of the particles. The velocity of steady-state
motion of the particles relative to the channel walls is composed of the velocity of mass motion of the gas u,
the speed of diffusiophoresis due to nonuniform distribution of the concentration vy [1, 2], the velocity v due
to nonuniform distribution of the temperature T [1, 2], and the gravitational velocity Vgt

D 9 2
v:u—i—VD—}—VT—i-Vg:U—i—ZfD—gradci'-fr gfadT—“"g—fggPi %ﬂx, (2)
v

Co

Y

where ¢; = n;/n; ¢; = ny/n; n=n; +ny; oy and n, are the concentrations of molecules of the first and second

kind, respectively; my and m,, molecular masses of the first and second component, respectively; pi, density
of the substance of the particle; ny, unit vector. The scalar coefficients fp, fr, and fg depend on the geo-
metrical dimensions of the particles, on the phase composition of the substance of the particles, on ¢y, ¢, T,
and on the molecular properties of the gas mixture. We do not present here the explicit form of the expres-
sions for the coefficients fD, fT, and f, because in the general case these expressions have a fairly cumber-
some form. The expressions for fp, f, and fy can be found in [L-4]. In the model of gas flow examined here,
the distributions of uy, uy, T, and c¢; depend only on the x-coordinate. Therefore v, =u,, and vy is described
by the expression

z?'

In (1 —cp) — viz

Ux:ux+UDx+UTx+vgx=ux +fD Dlg

2 R2
In7T—-2- ; . (3)
- 9 gl ep; o
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The path of the aerosol particles is bounded above by the limit path (see the curve in Fig. 1), and the length
of its projection onto the horizontal plane determines (g at which complete capture of the particles in the
channel occurs. This path can be found when the expressions for u, T, and ¢y are known.

The distriibution u in the channel, the pressures p, and c; and T in the stream under examination are
described by the system of equations (4)-(6) which contains the system of hydrodynamic equations (4) and the
equations describing mass transfer (5) and heat transfer (6) in the channel:

d o} d op 4 d [/ dug
y = 0; W=— e — —— g,
o 2 Tdx ax 3 ax " a ) @)
du, ap d du,
U - >
Pl dx 0z + dx (M dx )
2
e Dy 2 ) =, (®)
dx 0 dx
’ 2 2
d {kT Cor { ngte — Dyy 22 _éc_l_) +Cyo (erm iy sz_”“u_dl} — Lmyj, (6)
dx o dx P dx dx

where p = myny + mpn, is the density of the gas mixture; Cpi and Cpy are the heat capacities per one molecule
of the first or second kind, respectively, with constant pressure;

i 9=4n [ RgR, T, c) [(R, % 2 dR. @
0

In (7), the function ¢ (R, T, c;) describes the density of the stream of vapor molecules condensing (evaporat-
ing) on the surface of a drop. The function f describes the distribution over the dimensions of the aerosol
particles.

The system (4)-(6) is integrated in squares only in two boundary cases: when the particles have a neg-
ligible effect on the distribution of ¢; and T (i.e., with j = 0) and in the case of substantial effect exerted by
the particles on the distribution of ¢; and T, when the concentration of the vapors n, of the volatile component
at each point of the gas stream may be considered equal to the concentration of saturated vapors n;g (i.e., n;
is a function uniquely depending on the temperature T). With j = 0, integration of (4)-(6) yielded the follow-
ing expressions for the distributions of ux, uy, p, ¢;, and T in the channel:

uy = mynDy,s/(ph), (8)
ah? 1 — exp (w?)
.= {f — ; (9)
now I—expo
w2 { o L4 n (m—my [ Ua ( p )2 1
— Py — oz — & = B ARTR o) exp(st) — 2 () (1—gp L, (10)
p=p h?p On 3 Dy oy b i On *
ey =1 (1 —¢y) exp (st), (11)
T=T,—T)t+T,, (12)

where

‘ a1 1 1 exp (@4 s) — 1 (13)
a = poQy/(Asbrygh); fy = (1—cyg) s V= s (1_ T) exps—-_.—s(l —<-——expm_) +—52_ + ©+9) (I —exp o) .
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Fig. 2. Dependences of B = I ghnD;,(1 +A)/(Q,h) (a) and Q,/Q,
(b} on ¢y, for vapor —air mixture with ¢, = 0.02.

In (8)-(13), ¢y, ¢ and Ty, Ty, are the respective values of ¢; and T at the surfaces of the upper (cyq, Tg) and
lower (¢, Tp) plates; t = x/h; py = pl 5, t=; ‘

(I —cp)

o = nDmsip; s = In ;
(1 — c19)

My = M‘h:l ; b= plt:1 .

When there is no stream of vapor (c;n — ¢¢) the value of the parameter s tends to zero. In that case ux =0,
and (9) turns into Poiseuille's formula [6]:

2
By, (14)
2p

z

where oy = 12uQ/ (hbn).

Expressions (8)~(13) were obtained on the assumption that (T—Th)/T « 1 and that the distributions of c;
and T along the surfaces of the plates are uniform. The smallness of the gradients permitted us to consider
the transfer coefficienis n, Dy, and p to be independent of T.

When the aerosol particles have a substantial effect on the distribution of ¢; and T (i.e., the concentra-
tion of n in the stream may be considered equal to nyg(T)), the values of ¢; and T in the channel can be found
with the aid of the transcendental relationship obtained by joint integration of (5) and (6):

~ r — —
(T”f' Lﬂ'll ) ‘-ln 1 C]S(T) —f{In _]___.Ci] s e[(TO_T)_t(TO__Th)] -0, (15)
Cpik 1 —ocy — Cyg

Dy,

where T = (Ty + Th)/2; e;5 = n;g(T)/n; nyg(T) is the concentration of saturated vapors at the temperature T;
9 =n/ (Cplkn). The difference between the values ¢; and ¢;s(T) with specified { in a channel with constant ¢y,
¢ihs Tg» and Ty can be evaluated to advantage with the aid of the parameter

icl_‘cls(T)' (16)
Cy .

e =

In {(16), the values of ¢, at the point with the coordinate t, with specified ¢y and c;p,, are calculated by for-
mula (11), and ¢;g(T) at the point t, with the same ¢y, ¢4h, Ty, and Tp, are found in the process of solving
the transcendental equation (15), If €, with 0 < t < 1, is in absolute value much smaller than unity, the
values of ¢, can be calculated by formula (11). As a rule, the maximum value of the parameter ¢ decreases
with increasing T of the gas mixture. Here it should be pointed out that if an air—vapor mixture is indis-
pensable for practical applications, formula (11) makes it possible to find the actual values of ¢; within a
fairly broad interval of temperature changes. For instance, evaluations showed that in the case of channels
with ¢;q = ¢;5(Tg)s ¢ih = ¢1g(Th) for T =10°C, the maximum error that may be permitted in finding the values
of ¢; of water vapors with the aid of (11) cannot exceed 10%; for T 2x20°C, 7%; and for T = 30°C, 5%.

The motion of the aerosol particles toward the surface of one of the plates is described by the differen-
tial equation (1). When the vy~ and v,-components of v may be considered dependent only on the x coordinate

~1
—
22



VT

120

C)
g ) Fig. 3. Comparison of the curves

A o |
g \ ‘\, 7 of the dependence of [y on T, with

| \ the experimental data of [5].
&>7\2 N
. o
40

o = >
2 N R
o~ 4
~ % ™~ .
SIS SIS S
0 ] - i
Vel &2 86 7

(this possibility is realized, e.g., when the distributions of ¢; and T are described by formulas (11) and (12)
or by the relationship (15) and by the dependence of the coefficients fpy, f1, and when the dependence of Vg on
R may also be neglected), the length [ may be found by the formula

h

l[{:‘s‘ % dx. (17)

Ux

The integral on the right-hand side of (17) is expressed through elementary functions when the following condi-
tions are fulfilled: a) the distributions uy, u,, ¢;, and T are described by formulas (8), (9), (11), and (12), res-
pectively; b) the variables fp, {1, v, and Vox change only slightly in the channel and may be considered cons-
tant; c¢) the value of the parameter £, determined by (18), may be considered smaller than unity (£ < 1):

£ = [(my— my) Acsl/l(1 + A4) m) < 1, (18)
where
Aefosfro Ty Beh o Tot Ty
Dy,sT D,sS 5

In gas mixtures with similar molecular masses (e.g., vapor—airmixture), when Jvgx| < ]VT}.{+ vpx/, the
value of ¢ is much smaller than unity. This makes it possible in the integration of (17) to confine oneself to
the terms of zero and first orders of smallness with respect to the parameter £. As a result we obtain for lK

Z}{:l}m {(L*_L——.L) 1 -{_ (m2—m1) _
2 l —expe © /] Yo m, (19)
. (my — my) capy o[l —exp (042 3)] l—exp 29\ ‘
ﬁ[1+ 2 mspexps ((0)-}-28)(1—-expo)) 25 )]}“‘"‘)@1(3)‘

Here lyy = Qh/bnDyys(l + A)l; s = In(cgp/cy)s B= [(my—my)A)/ [my(L + A)], w = nmyDy,s/p.

Formula (19) assumes a simpler form when «w = s:

L=l I s + My -— My —B [1+ fl(w F(S)“Elnoqf‘z(s), (20)
l C10— C1p My my :

where

[(1 + exps + exp2s)/3+ (1 —exp 2 s)/(2s)]
211/2 + l/s+ (1/2— 1/s) exp s] exp s

F(s)=

Expression (20) may be used, e.g., in calculations of I g of channels with vapor—air mixture. Whenw = s,
the function of I decreases monotonically with increasing ¢, and Ty, tending to the limit

lim £ = QoA [l 4 W/ Dyomynl/[2 brDyacen (1 + A). (21)

§-> 00

If in (21) we put cyp, equal to unity, we obtain the length ZE to which applies that Iz cannot be smaller than it.
The nature of the decrease of I can be seen in Fig. 2a, where according to formula (20) the curve of the
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dependence of the function B = [ybnD;,(1 + A)/Qsh on ¢y for particles with fp = 0.2, suspended in a stream
of vapor—air mixture with ¢, = 0.02, was plotted. Here, the Vg~ and vgx—components of the velocity were
disregarded because they are small [5].

When w < s, the function [y with increasing ¢y, at first monotonically decreases, and then, when c;y has
attained a certain value, it begins to increase monotonically (i.e., the function I K for w < s has a minimum).
It can be seen from formulas (19) and (20) that when the values of h, b, ¢y, ¢y, Ty, Th are constant, the
length [y depends linearly on the throughput of scrubbed gas Q;,. When Q,, ¢y, Ty, ¢y, and Ty are constant,
the length [y depends linearly on h and changes inversely proportionally to b. The molecular stream of the
volatile substance Q (throughput), required for scrubbing the stream Q, in the case described by expressions
(19) and (20), can be evaluated by the formula

Qy = LbnDyys/h = Qu®, ()1 + A), (22)

from which it can be seen that the stream Q, depends linearly on Q, and does not depend on the geometrical
dimensions of the channel. An analysis of (22) showed that with increasing ¢y (with constant values of Q,, Cips
Ty, and Ty) the function @, increases monotonically (i.e., the minimum amount of the volatile substance is
expended on scrubbing the polluted gas when c;, differs little in magnitude from c;). This is clearly shown in
Fig. 2b which contains the curve of the dependence of the variable Q,/Q, on ¢y, (22) for aerosol particles with
fpy = 0.2 suspended in a vapor—air mixture with ¢;p = 0.02. In calculating the values of Q{/Q,, the function @,(s)
was used. The minimum flow Q, of water vapor, required for scrubbing Q,, can be found by a formula that

was obtained by the limit transition s — 0:

lem=Q2[ ! +MJ/[<1+A)(1+MM. (23)

Cop my

The smallest value Q; i, is attained with cy, =1, and it is equal to Qymy/ (m; + Amy). It follows from (23) that
when the process of scrubbing air can be described by the relationships (19) and (20), complete scrubbing of
the air stream Q, requires a larger stream Q, of water vapor molecules (with fpy = 0.2; Q iy, = 1.25).

Formulas (19) and (20) describe the capture of aerosol particles from gas mixtures unsaturated by vapors
of the volatile substance (i.e., when the concentration of vapors of the volatile component at the surface of the
upper plate is lower than the concentration of the saturated vapors corresponding to the temperature of the up-
per plate). Such conditions of scribbing can be created, e.g., by evaporating the molecules of the volatile com-
ponent from the surface of the upper plate made of porous material, or by making the vapors in the channel
pass through the pores of this plate.

When ! is calculated by formulas (19) and (20), the mean values of the coefficients Dy, and p and of the
concentration n have to be substituted in these formulas. These relationships may be used for calculating I
and Q, when volatile drops or particles are captured in the channel (passing with ¢ 1), if one of the following
conditions is fulfilled:

Uy >>UDx -+ vry ‘l”_ Ugx » (24-)
Ux + Upe DUry + Ugn, Upy = coOnst, (25)
Ux - Upy + vgx»vrx, up, = const, v,y = const. (26)

When formulas (19) and (20) cannot be used for evaluating l, the boundary path of the particles can be found
by numerically integrating the systems of equations (1), (4)-(6) to which the equation of the growth of drops has
to be added:

— Tp; ——f— =—4aRp(R, T, c;)m;. 27)

1t should be pointed out that with the aid of (20) we can also approximately evaluate /g when the drops grow in
a condenser, where £ «<1. In that case we must substitute into (20) the minimum values of fp, v, fr, and Vex-

The experimental study of the settling of particles of tobacco smoke from a vapor—air stream in a plane~
parallel channel was carried out in [5]. In the installation described there water vapor evaporated from the
surface of the upper plate and condensed on the lower plate. The authors of [5] obtained satisfactory agreement
between the experimental dependences of Iy on T; and Q; and the results of numerical calculations on a computer.



The distributions of ¢;, T, and u in [5] were found by numerical integration of the system (4)-(6) which in the
present work was integrated in quadratures. The authors of [5] took into account the dependence of u, Dy,,
and ®» on T. A comparison of the values of I, obtained in [5] by numerical integration, with the values of
Ik calculated by formula (19) showed that they coincide well, The maximum difference between the values of
IK calculated by formula (19) and those taken from [5] (caused by the fact that in deriving (19) the dependence
of the transfer coefficients on T was not taken into account) did not exceed 8%. '

Figure 3 represents a comparison of the curves of the dependence of [ on T plotted according to for-
mula (19) with the experimental data presented in Figs. 3 and 12 in [5]. The experimental results were ob-
tained with h = 2 cm, width of the plates b = 30.5 ¢cm, mass throughput of air Q,* = 0.0216 g/sec for particles
with a radius of 8:107% ¢cm. Curves 1 were plotted for Tp = 68°C, curves 2 for Ty = 77°C, curves 3 for Th =
83°C. The solid lines in Fig. 3 were plotted without regard to the thermodiffusiophoretic motion of the aero-
sol particles (model 1 in [5]); the dashed lines with taking thermodiffusiophoretic motion of the aerosol par-
ticles into account (A = 0.2). It can be seen from Fig. 3 that the solid lines as well as the dashed lines agree
within the experimental accuracy with the experimental data. The experimental values for Ty = 68°C are de-
noted by rings, for Tp = 77°C by rectangles, and for Ty = 83°C by triangles.

NOTATION

T, temperature; x, z, Cartesian coordinates; t, dimensionless coordinate (t = x/h); v, particle velocity;
u, mass velocity of the gas; ¢, relative concentration; n, concentration; p, density of the gas mixture; pj, den-
sity of the substance; m, molecular mass; u, coefficient of dynamic viscosity; v, coefficient of kinematic vis~
cosity; Dy,, diffusion coefficient; n, thermal conductivity; R, radius of aerosol particle; g, acceleration of
gravity; Cp, heat capacity with constant pressure; k, Boltzmann constant; L, temperature of phase transition;
j, density of vapor effluence; Q, gas flow; p, pressure; h, distance between the plates forming the channel; b,
width of the plates; ZK, length of the channel.
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